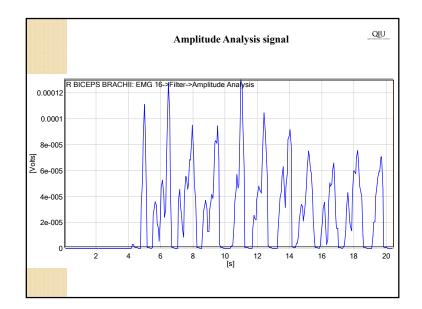
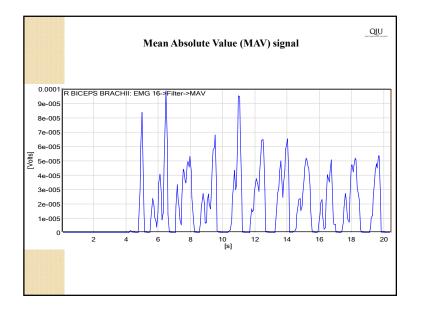
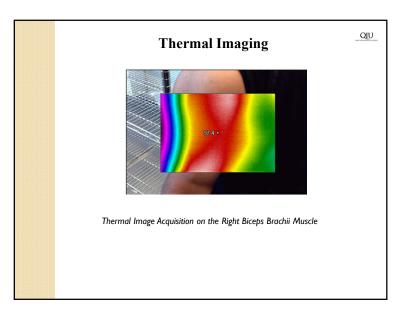
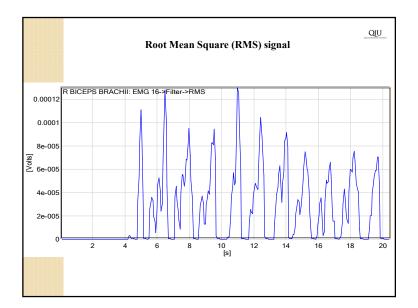
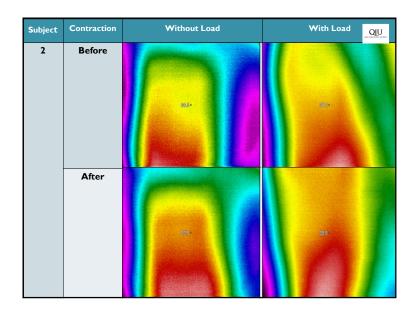

Ref.	Author	Anatomical Part	Machine Specifications	Parameters	Merits	Demerits
[4]	0. H. Huang, Y. P. X. Chen, J. F. Re, J. (2007) - Forcarm motion) • Ultround probe • #MG signals 0. H. X. Chen, J. F. He, J. (2007) - Force • EMG - Force 0. Mathematical and the state (2007) • Matronome • Velocity - Force	 The amount of ultrasound gel does not significantly affects the sEMG signals. Correlation between the sEMG signals, ultrasound images and joint angels signal showed a good performance and a better outcome. 	The sampling rate need to be increased. Uniform calibration procedure is necessary to ascent the other similar system measurements. Further studies need to be done or large number of subjects and th experiment need to be performed or the dynamic contractions as well.			
[5]	J. Petrofsky, M. Laymon. (2005)	Biceps Bracheoradiali S Quadriceps Gastrocnemius muscle	2 bipolar vinyl foam adhesive EMG electrodes (Ag- AgCl) 4-channel EMG amplifier Isometric stain gauge transducer bar	Isometric contractions Average frequency Amplitude RMS voltage Conduction velocity	 The EMG amplitude signal and tension for isometric contractions showed a linear relationship. The fatigue of muscle can only be indicated when the amplitude of EMG signal is increased, and the skin temperature ia high as well. 	 Muscle temperature may variate due to some aspects. It was difficult to identify the fatigue before warming the muscle to the normal(basic) temperature.
[6]	Y.Tsutsui, T.Tanaka, S.Kaneko, MQ. Feng. (2005)	-Quadriceps femoris -Biceps femoris (knee joint)	Ultrasound transducer Torque sensor A/D converter	Force Angle Torque	 Implemented a new non- invasive sensor (UMS) for the muscle activities and it is able to enhance the precision of torque measurements. 	 The fluctuation effected by disconnecting the transducer from skin need to be suppressed as i displease the torque measurement.
[7]	C. Simon, P. VanBaren , E. S. Ebbini. (1998)	Tissue	Therapeutic U/S unit Transducer Thermocouple sensor Ultramark 9 imaging system Hydrophone	Temperature change Echo stretching / compression	 The experimental outcome showed a good relationship between the echo location shifts and the increment in temperature. Better accuracy is achieved when any immateriality is heated by the HIFU therapeutic 	 The HIFU is not widely endorsed in medical clinics. The effects of the thermo-acoustic lens caused ripples by the gradients in temperature distribution.

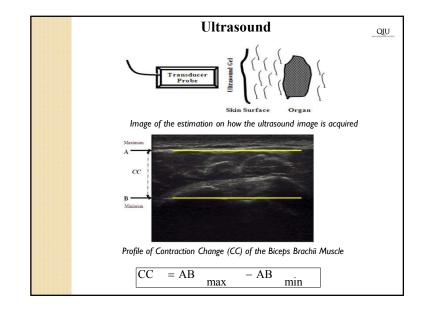

				Critical A	QU	
Ref.	Author	Anatomical Part	Machine Specifications	Parameters	Merits	Demerits
[1]	H. Li, G. Zhao, Y. Zhou, X. Chen, Z. Ji, L. Wang. (2014)	- Tibialis anterior (TA) muscle on the hemiphegia patients.	Linear array ultrasound transducer EMG surface electrodes	Muscle strength level (MSL) RMS Muscle thickness change (TC)	The rectified thickness change (TC) amplitude and mean of EMG signals showed a linear correlation. The sonomyography (SMG) is more preferable for estimating the MSL as compared to EMG.	Further investigation should b performed to a large number of subject in order to obtain a accurate data results. Factors such as age, gender an malignant origins need to b considered for future experiments.
[2]	N. Nejat, P.A. Mathieu, M. Bertrand. (2012)	-Right biceps brachii muscle	Surface electrodes •Load (1kg) •Strain gauge unit •Physiodata amplifier •High density linear probe	EMG signals Average RMS of EMG signal Contraction force MVC	 The biceps brachii muscle structure is best to be used to control the myselectric profileses. US imaging convinced that how the muscle cross section variate in various positions that can indicate the changes in EMG signals. 	 Future investigation is required to determine how an individual's compartment could be activated volumarily.
[3]	J. Y. Guo, Y. P. Zheng, Q. H. Huang, X. Chen. (2008)	-Extensor carpi radialis muscle.	US transducer EMG electrodes US Pulser / Receiver Electronic goniometer	A-mode US images Joint angels sEMG signals Muscle thickness change sEMG RMS	The deformation of muscle and the sEMG root mean square signals were linearly correalated with the angles of wrist extension.	A study need to be done on the other body joints or on the disabled subjects. It was difficult to place both the ID sonomyography and sEMC sensors (electrodes) as the muscle area was small.

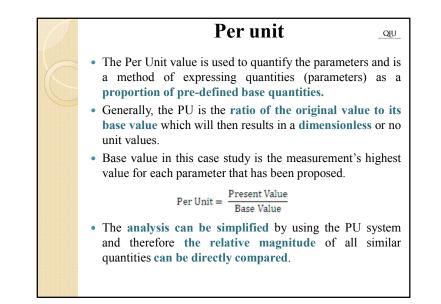


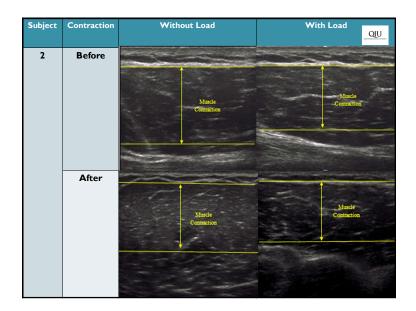


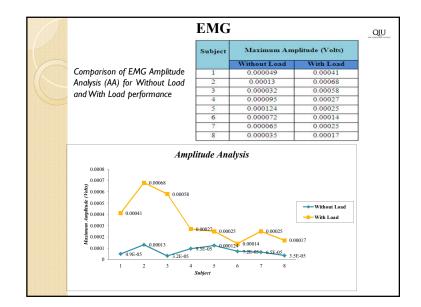


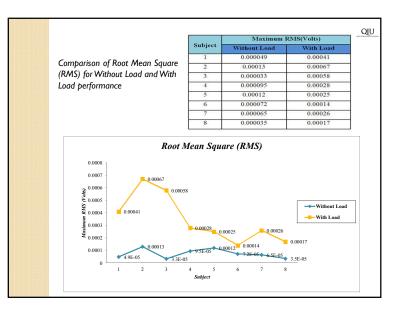


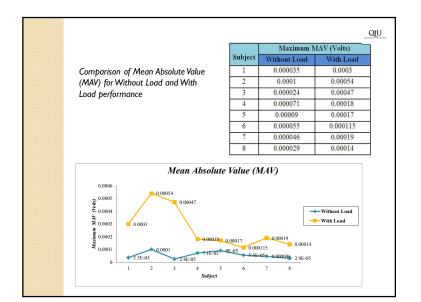


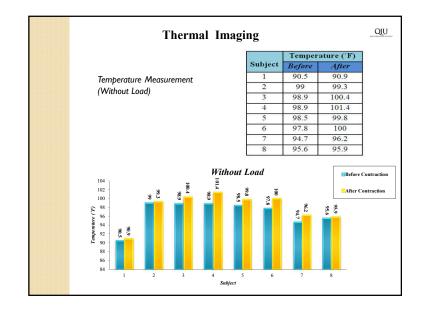






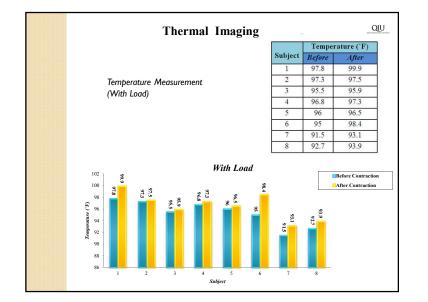


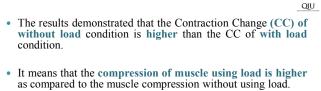




- The increase of amplitude in the signal of with <u>QU</u> load condition is consistent for all the subjects.
- That means all eight subjects **achieved higher amplitude** after the muscle contraction **using load**.
- It reveals the relationship between the muscle contractibility, *Mc* and the amplitude where the function is given by:

$$Mc = f(E_A)$$


- The equation demonstrates that the **muscle contractibility is proportional to the amplitude** of the EMG.
- The result of **MAV and RMS** also shows the increase in amplitude when the subject performs contraction using load of 10lb dumbbell.

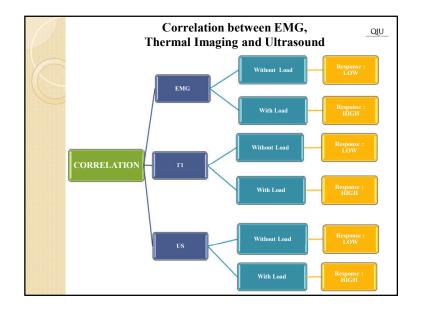

• The results of the thermal imaging showed a **good relationship** between the muscle contractibility, *Mc* and the temperature change of the both without load and with load performance.

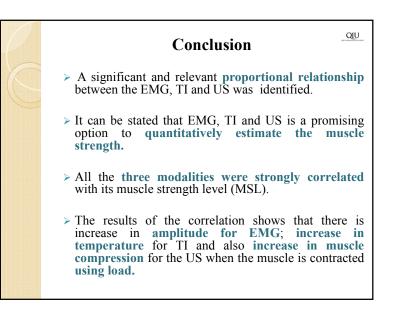
$$Mc = f(T_I)$$

- The function above shows that the **increase in temperature after the contraction activity** is **proportional** to the muscle contractibility, *Mc*.
- The higher the value of the subjects' temperature, the muscle contraction increases.

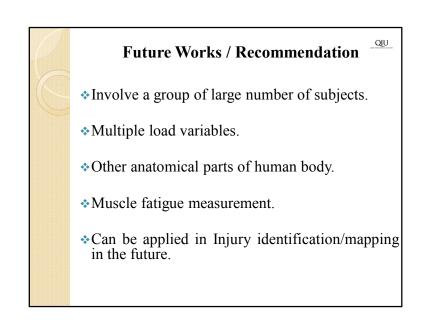
Subject	Compression Length (cm)								
		Without	Load	With Load					
	Before	After	Contraction Change, CC	Before	After	Contraction Change, CO			
1	4	2	2	2.8	1.8	1			
2	4	3.5	1.5	3.5	3	0.5			
3	4.2	3	1.2	3.5	2.5	1			
4	4	1.5	2.5	2.5	2	2			
5	3.5	2.5	1	2.8	2.3	0.5			
6	3.5	2.5	1	2.5	2	0.5			
7	4.1	3.5	0.6	2	1.5	0.5			
s	3.5	2.5	1	1.8	1	0.8			

- The biggers breakii ways compressed more when the subject
- The **biceps brachii were compressed more** when the subject was applying too much of pressure on the muscle area.
- This shows a proportional relationship between the muscle thickness and the muscle contractibility which is given by the equation below:


$$Mc = f(\frac{1}{h})$$


• Where *h* is the contraction change (CC) of the muscle that reveals the contraction change of the with load activity is higher than the contraction change of the without load activity.

	Correlation between								
	EMG and Ultrasound (US)								
		Without Load			With Load				
Subject	EMG	Ultrasound		Subject	EMG	Ultrasound			
	Amplitude Analysis	Thickness Change	Muscle Compression	Subject	Amplitude Analysis	Thickness Change	Muscle Compression		
1	0.0721	0.S	Low	1	0.6029	0.5	High		
2	0.1912	0.6	Low	2	1	0.25	High		
3	0.0471	0.48	Low	3	0.8529	0.5	High		
4	0.1397	1	Low	4	0.3971	1	High		
5	0.1824	0.4	Low	5	0.3676	0.25	High		
6	0.1059	0.4	Low	6	0.2058	0.25	High		
7	0.0956	0.24	Low	- 7	0.3676	0.25	High		
8	0.0515	0.24	Low	8	0.25	0.4	High		


-		_		ithout Lo	ad			With Load				
	Subject	The: Ima		EMG		Subject	Thermal Imaging			EMG		
		Before	After	AA	MAV	RMS		Before	After	AA	MAV	RMS
	1	0.8925	0.8964	0.0721	0.0648	0.0731	1	0.979	1	0.6029	0.5556	0.6119
	2	0.9763	0.9793	0.1912	0.1852	0.194	2	0.974	0.976	1	1	1
	3	0.9753	0.9901	0.0471	0.0444	0.0493	3	0.956	0.96	0.8529	0.8704	0.8657
	4	0.9753	1	0.1397	0.1315	0.1418	4	0.969	0.974	0.3971	0.3333	0.4179
	5	0.9714	0.9842	0.1824	0.1667	0.1791	5	0.961	0.966	0.3676	0.3148	0.373]
	6	0.9645	0.9862	0.1059	0.1019	0.1075	6	0.951	0.985	0.2058	0.213	0.209
	7	0.9339	0.9487	0.0956	0.0852	0.097	7	0.916	0.9319	0.3676	0.3519	0.3881
	8	0.9428	0.9458	0.0515	0.0537	0.0522	8	0.928	0.9399	0.25	0.2593	0.253
		er Unit MG (W			TI and				nit Value MG (W			
	• Two	moda	lities	were c	ompa	red: W	ith Load	and V	Vithou	t Load		
	• Prop	ortion	al cor	relatio	on.							
	1					d on i	normand	durin	a tha	mucol	a aant	raati
				ities s	nowe	a an 1	ncreased	durin	g the	musci	e cont	ract
		g load.										
	• The		1	1	1	c						

UIII	asour		(C)	0.0	g (TI) and
		iu (C	(5)		
			Without Load		
Subject	Thermal Imaging		Ultr	asound	
	Before	After	Thickness Change	Muscle Compression	
1	0.8925	0.8964	0.8	Low	Per Unit Values for the
2	0.9763	0.9793	0.6	Low	
3	0.9753	0.9901	0.48	Low	and US (Without Load,
4	0.9753	1	1	Low	
5	0.9714	0.9842	0.4	Low	
6	0.9645	0.9862	0.4	Low	
7	0.9339	0.9487	0.24	Low	
8	0.9428	0.9458	0.24	Low	
			With Load		
Subject	Subject Thermal Ultra		asound		
	Before	After	Thickness Change	Muscle Compression	Per Unit Values for th
1	0.979	1	0.5	High	TI and US (With
-	0.974	0.976	0.25	High	Load)
2		0.96	0.5	High	Loudy
-	0.956	0.90		High	
2		0.90	1	riign	
2 3	0.956		1 0.25	High	
2 3 4	0.956 0.969	0.974			
2 3 4 5	0.956 0.969 0.961	0.974 0.966	0.25	High	

- The results and analysis of the correlation rev. QU that it showed a very **good relationship** (performance) on the muscle contractibility.
- A mathematical function is generated from the correlation of the three modalities.
- The function is given by the equation below; $Muscle\ Contractibility, M_c \propto f(E_A, T_I, \frac{1}{h})$
- It is proven that the contractibility of muscle is **proportional** to the **increase of temperature** of thermal imaging, **amplitude for the EMG**, and **muscle compression change for the ultrasound when a force (load)** is applied to the muscle during its contraction.

