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ABSTRACT

Tinospora is a plant genus widely distributed in Southeast Asia, where it is used as traditional medicine. Extracts from the

stem and leaves of Tinospora crispa and Tinospora cordifolia are rich in phytochemicals like flavonoids, terpenoids, alkaloids

etc., which are well known for their hypoglycaemic and/or antioxidant effects. Diabetes-induced hyperglycaemia triggers

an increased formation of advanced glycation endproducts (AGE) which are associated with inflammation and oxidative

stress causing diabetic complications. Little is known about the effects of T. crispa and T. cordifolia on AGE formation and

prevention of AGE-induced effects like oxidative stress. Therefore, we discussed the updated information on the effects of

Tinospora extracts on the AGEs formation. Glucose lowering Tinospora constituents mainly belonged to the group of

terpenoids e.g., borapetoside A and borapetol A, while alkaloids like berberine and palmatine reduced the AGE formation.

Flavonoids showed to be protective against AGE-associated oxidative stress. Nonetheless, more in depth studies are further

required to understand the protective mechanism of the extracts.

Keywords: Advanced glycation end products, diabetes, oxidative stress, Tinospora.

INTRODUCTION

Plants belonging to the genus Tinospora (family:

Menispermaceae) are woody climbing shrubs with

exstipulate alternate roundish leaves and corky barks on

its stem. Out of the 34 species known today; Tinospora

cordifolia, T. crispa and T. sinensis are well known for their

medicinal plants uses in diabetes, jaundice, rheumatoid

arthritis, fever, vomiting, anaemia, polyuria, and other

disorders (Khan et al., 2016; Sharma et al., 2019).

Several clinical studies have shown that the Tinospora

species possess a wide range of biological activities
including anti-diabetic (Lokman et al., 2013), antioxidant
(Kannadhasan and Venkataraman, 2013, Jayaprakash et al.,
2015), anti-inflammatory (Philip et al., 2018, Birla et al.,
2019), anti-tumorigenic (Singh et al., 2004, 2005, Ibrahim
et al., 2011) and anti-osteoporotic (Kapur et al., 2008)
properties. Under prolonged hyperglycaemia, the formation
of advanced glycation end products (AGEs) is increased and

the products accumulate in the blood and various tissues
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(Chang et al., 2017). New studies have shown a link between

AGE accumulation and diabetes related complications such

as diabetic neuropathy, diabetic nephropathy, diabetic

retinopathy, and diabetic atherosclerosis (Ahmed et al.,

2005; Sharma et al., 2012; Singh et al., 2014).

According to the WHO (2021), diabetes affected 422

million people worldwide in 2014, which surged from 108

million in 1980. Developing countries have been

experiencing a faster increase in prevalence of diabetes than

high-income countries. This trend is worrying as, in 2019,

a 1.5 million deaths were attributed to diabetes and another

2.2 million deaths in 2021 were recorded associated with

high level of blood glucose (World Health Organization,

2021). Adequate control of the blood sugar level is

important for a healthy well-being. Since then, researchers

have been an increased interest in utilizing medicinal plants

with anti-diabetic or anti-hyperglycaemic properties, which

can reduce or even prevent diabetes-associated

abnormalities (Surya et al., 2014). In this review we will

focus on Tinospora concentrate for its’ diabetes, diabetes

related AGEs formation and oxidative stress ameliorating

properties.

Chemical constituents of Tinospora crispa and Tinospora

cordifolia

Tinospora crispa, one of the species in the genus Tinospora,

is known in Malaysia as “Akar patawali” and “Akar

seruntum” (Noor and Ashcroft, 1989). T. crispa is widely

distributed in the Southeast Asian region including Malaysia,

Indonesia, Thailand, and Philippines. T. cordifolia is also

widely distributed in South-East Asia but is mainly used in

India and neighbouring countries. It has been used as

traditional Indian medicine to treat a broad spectrum of

illnesses (Chi et al., 2016). The phytochemicals of various

Tinospora species have been extensively studied and many

of them have been isolated and identified for different

biological properties. Chi et al. (2016) stated that 223

phytochemicals have been isolated from this genus, whereby

diterpenoids are the most abundant isolated phytochemicals;

others include alkaloids, steroids, terpenoids,

polysaccharides and C
6
-C

3
 derivatives. Ahmad et al. (2016)

reported a total of 65 compounds isolated from T. crispa

which are mainly alkaloids, flavonoids, terpenoids, lignans,

nucleosides and sterols (Table 1 and Table 2).

Table 1: Classification of compounds found in T. crispa

Classification of Name of the chemical compounds References
compounds

Terpenoids Borapetol A Ruan et al. (2013)

Borapetol B Lokman et al. (2013)
Ruan et al (2012)

Borapetol C Ruan et al. (2012)

Borapetoside D Choudhary et al. (2010)

Borapetoside H Koay and Koay (2013)

Tinocrisposide Adnan et al. (2019)

(5R,6S,9S,10S,12S)-15,16-Epoxy-2-oxo-6-O-(β-Dglucopyranosyl)- Choudhary et al. (2010)
cleroda-3,7,13(16),14-tetraen-17,12-olid-18-oic acid methyl ester

(5R,6R,8S,9R,10S,12S)-15,16-Epoxy-2-oxo-6-O- (β-D-glucopyranosyl)- Choudhary et al. (2010)
cleroda-3,13(16),14-trien-17,12-olid-18-oic acid methyl ester

(2R,5R,6R,8S,9S,10S,12S)-15,16-Epoxy-2-hydroxy-6-O-{β-D-glucopyranosyl- Choudhary et al. (2010)
(1→6)-α-Dxylopyranosyl}-cleroda-3,13(16),14-trien-17,12-olid-18-oic acid
methyl ester

(2R,5R,6R,8R,9S,10S,12S)-15,16-Epoxy-2-hydroxy-6-O-(β-D-glucopyranosyl) Choudhary et al. (2010)
-cleroda-3,13(16),14-trien-17,12-olid-18-oic acid methyl ester

(5R,6R,8S,9R,10R,12S)-15,16-Epoxy-2-oxo-6-O-(β-D-glucopyranosyl)-cleroda-3, Choudhary et al. (2010)
13(16),14-trien-17,12-olid-18-oic acid methyl Ester
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Table 1 contd....

Classification of Name of the chemical compounds References
compounds

Tinocrispol A Lam et al. (2012)

2-O-Lactoylborapetoside B Lam et al. (2012)

6’-O-Lactoylborapetoside B Lam et al. (2012)

(3R,4R,5R,6S,8R,9S,10S,12S)-15,16-Epoxy-3,4-epoxy-6-O-(β-D- Choudhary et al. (2010)
glucopyranosyl)-cleroda-3,13(16),14-trien-17,12-olid-18-oic acid methylester

(1R,4S,5R,8S,9R,10S,12S)-15,16-Epoxy-4-O-(β-Dglucopyranosyl)- Choudhary et al. (2010)
cleroda-2,13(16),14-triene-17(12),18(1)-diolide

Tinotufolin C Koay and Koay (2013)

Tinotufolin F Koay and Koay (2013)

Tinotufolin E Koay and Koay (2013)

(2R,7S,8S)-8-[(2S)-2-(3,4-Dihydroxy-2,5-dimethoxytetrahydro-3-furanyl)-2- Choudhary et al. (2010)
hydroxyethyl]-2,8-dimethyl-10-oxo-11-oxatricyclo [7.2.1.02,7] dodec-3-ene-3-
carboxylate

Cycloeucalenol Kongkathip et al. (2002)

Cycloeucalenone Kongkathip et al. (2002)

Magnoflorine Patel and Mishra (2012)

Palmatine Patel and Mishra (2012)
Neag et al. (2018)

Jatorrhizine Patel and Mishra (2012

Alkaloids Berberine Patel and Mishra (2012
Neag et al. (2018)
Xia et al. (2011)
Yin et al. (2008a)
Yin et al. (2008b)

4,13-Dihydroxy-2,8,9-trimethoxydibenzo [a, g] quinolizinium Yusoff et al. (2014)

N-Formylasimilobine-2-O-β-D-glucopyranoside Koay and Koay (2013)

N-Acetyl nornuciferine Praman et al. (2011)

Higenamine Praman et al. (2012)

Adenine Praman et al. (2012)

Adenosine

Uridine Praman et al. (2013)

Salsolinol Praman et al. (2012)

(“)-Litcubinine Praman et al. (2012)

Tyramine Praman et al. (2012)

Syringin Praman et al. (2012)

Tinotuberide Koay and Koay (2013)

Flavonoids Isoorientin 2"-O-(E)-sinapate Chang et al. (2015)

2"-(E)-p-coumarate Chang et al. (2015)

Cosmosiin 6"-(E)-ferulate Chang et al. (2015)

Cosmosiin 6"-(E)-cinnamate Chang et al. (2015)

Source: Ahmad et al. (2016); Chi et al. (2016).
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Table 2: Classification of compounds found in T. cordifolia

Classification of Name of the chemical compounds References
compounds

Terpenoids Tinocordin Sivasubramanian et al. (2013)

Tinosponone Iqbal et al. (2005)

Tinosporaside Ghatpande et al. (2019)
Choudhary et al. (2014)

Amritoside A Maurya et al. (2004)

Amritoside B Maurya et al. (2004)

Amritoside C Maurya et al. (2004)

Amritoside D Maurya et al. (2004)

Tinocordioside Maurya et al. (2004)

Tinocordioside tetraacetate Maurya et al. (2004)

Tinoscorside C Van Kiem et al. (2010)

Borapetoside B Van Kiem et al. (2010)

Borapetoside F Van Kiem et al. (2010)

Furano diterpene glycoside Saeed et al. (2020)
Sharma et al. (2018)
Pandey et al. (2012)

Cordioside Pandey et al. (2012)

Tinosporide Saeed et al. (2020)

(5R,10R)-4R,8R-Dihydroxy-2S,3R:15,16-diepoxycleroda-13(16), Dhanasekaran et al. (2009)
1712S,18,1S-dilactone

Columbin Saeed et al. (2020)

Cordifolide A Tiwari et al. (2018)
Pan et al. (2012)

Cordifolide B Tiwari et al. (2018)

Pan et al. (2012)

Cordifolide C Tiwari et al. (2018)
Pan et al. (2012)

Cordifolide D Tiwari et al. (2018)

Cordifolide E Tiwari et al. (2018)

Tinosporicide Sharma et al. (2020)

Tinosporaclerodanoid Ahmad et al. (2010)

Tinosporafuranol Ahmad et al. (2010)

Tinosporaclerodanol Ahmad et al. (2010)

Tinocordifolioside Tiwari et al. (2018)

Tinocordifolin Tiwari et al. (2018)

Angelicoidenol-2-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside Van Kiem et al. (2010)

Tinosporin Saeed et al. (2020)

Alkaloids Tinosporic acid Saeed et al. (2020)

Berberine Tiwari et al. (2018)

Palmatine Tiwari et al. (2018)

Jatrorrhizine Tiwari et al. (2018)
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Advanced glycation endproducts and their role in

diabetes-induced complications

Diabetes and its complications have detrimental

consequences for human health. Excessive advanced

glycation endproducts (AGEs) accumulate in the body

during the early stages of diabetes and bind to its receptor

RAGE, impairing regulation of glucose. This in turn

increased blood glucose levels in the later stages of diabetes

which hasten the production of more AGEs (Xiong et al.,

2020). The excessive generation of these molecules are

crucial in the development of diabetes and its

complications.

Advanced glycation end products or in short AGEs are

a heterogeneous group of molecules, which were discovered

in the early 20th century by the French chemist, Louis

Camille Maillard (Maillard, 1912). The formation of AGEs

follows the same process that leads to the browning of food

during frying. The Maillard reaction is a natural occurring

chemical process that takes place between an ε amino group

of an exposed amino acid residue of a protein and an

aldehyde group of a free monosaccharide such as glucose

and fructose.

The reaction of the afore mentioned ε amino group of

an exposed amino acid of a protein residue, e.g., lysine, and

an aldehyde group of a free monosaccharide, e.g., glucose

will cause the formation of glucosyl-lysine which undergoes

a supplementary reaction to form a reversible Schiff base

(Chaudhuri et al., 2018). The formed Schiff base is an

intermediate compound that is unstable and therefore needs

to undergo structural rearrangement into a more stable,

covalently bound Amadori product (Yamagishi et al., 2015).

Over the time, the Amadori products undergo rearrangement

once again to form irreversible molecules called AGEs.

The Amadori products could either be: 1) oxidized,

resulting in AGE, or 2) dehydrated and deaminated, to

assemble highly reactive intermediates called reactive

carbonyl compounds or α-dicarbonyl compounds (α-DC),

mainly methylglyoxal (MGO), glyoxal (GO) and 3-

deoxyglucosone (3DG) (AL-Khateeb et al., 2018). Under

long-standing hyperglycaemic conditions, these reactive

carbonyl compounds are increasingly formed because they

react with proteins, lipids and DNA to produce additional

AGEs (Singh et al., 2014). The cells may undergo a stage

of intracellular oxidative stress, which is also known as

carbonyl stress depending on the amount of AGEs in the

cells.

Anaerobic glycolysis, and to a lesser extent, lipid

peroxidation produce α-DCs, which undergo unbiased

reaction with proteins, lipids, and DNA to produce more

AGEs (Rabbani and Thornalley, 2015). MGO, one of the

major precursors of AGEs, is produced spontaneously during

glycolysis from dihydroxyacetone phosphate and triose

phosphate isomers glyceraldehyde-3 phosphate and is

primarily linked to the β-elimination of a phosphate group

Table 2 contd...

Classification of Name of the chemical compounds References
compounds

Magnoflorine Tiwari et al. (2018)

Tembetarine Tiwari et al. (2018)

N-trans-Feruloyl tyramine diacetate Tiwari et al. (2018)

Choline Tiwari et al. (2018)

3(a,4-dihydroxy-3-methoxybenzyl)-4-(4-hydroxy-3-methoxybenzyl) Tiwari et al. (2018)
tetrahydrofuran

Flavonoids (–)-Epicatechin Pushp et al. (2013)

(+)-Catechin Pushp et al. (2013)

Steroids β-Sitosterol Tiwari et al. (2018)
Maurya et al. (2009)

20α-Hydroxy ecdysone Tiwari et al. (2018)

Polypodine B 20,22-acetonide Van Kiem et al. (2010)

Source: Chi et al. (2016).
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from the enediolate phosphate intermediate (Kieffer et al.,

2014).

Receptor for advanced glycation endproducts

AGEs are biomarker molecules that play a significant role

in ageing and a multitude of metabolic diseases (Chaudhuri

et al., 2018). The accumulation of these heterogeneous

molecules is seen in disorders like diabetes, chronic kidney

disease, inflammation, neurodegeneration, and ageing

(Senatus and Schmidt, 2017). RAGE or the receptor for

advanced glycation end products, is a ubiquitous, 55 kDa

surface protein (Popa et al., 2014) with three distinct

functional structure components; (i) cytosolic, (ii)

transmembrane, and (iii) extracellular regions; consisting

of two C-type domains and one V-type domain (Lee and

Park, 2013). Neeper et al. (1992) first characterized the

receptor for advanced glycation end products (RAGE) as a

type I single-pass membrane protein (receptor) of the

immunoglobulin superfamily and is widely known as the

signal-transducing receptor for AGEs. Other receptors, in

addition to RAGE, are known to bind advanced glycation

end products. However, with the exception of RAGE, these

receptors may be involved in the elimination of AGE rather

than signal transduction.

AGE-RAGE complex

The binding of AGE to RAGE forming an AGE-RAGE

complex due to chronic hyperglycaemia evokes oxidative

stress, thrombogenic and inflammatory reactions that

interfere with various cell’s functions, therefore, causing the

onset of metabolic diseases (Aragno and Mastrocola, 2017).

Once the AGE ligands bind to the RAGE, multiple signalling

pathways are activated including reactive oxygen species

(ROS) signalling pathway, Rat sarcoma protein 21 (Ras p21)

pathway, Ras-extracellular signal-regulated kinase (Erk)

pathway, Ras-related C3 botulinum toxin substrate 1

(Rac1)-mitogen activated protein-kinase kinase 6 (Mkk6)

pathway, phosphoinositide 3-kinase (PI3K)-caspase 3

(Casp3) dependent pathway, Rac1-Mkk4/7 pathway, Janus

kinase (JAK)-signal transducer and activator of transcription

(STAT) pathway, PI3K-protein kinase B (Akt) pathway and

mitogen-activated protein kinase (MAPK) mediated

pathway. These pathways activate the downstream

inflammatory response such as the activation of NF-κB, AP-

1 and STAT-3 (Roy, 2013), which are the transcription

factors of pro-inflammatory cytokines (IL-1α, IL-6) and

tumour necrosis factor (TNF-α). The generation of pro-

inflammatory cytokines and TNF-α further increase

inflammation (Ahmed, 2005) and oxidative stress resulted

Figure 1: The schematic
diagram summarised
the biological effects
and the formation of
AGEs. (Source: Abate et
al., 2015)
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in excessive reactive oxygen species production leading to

cell and DNA damage (Nita and Grzybowski, 2016).

AGE-RAGE signalling and oxidative stress

Oxidation stress induced by the AGE-RAGE complex

further stimulate the AGEs formation and subsequently the

overexpression of RAGE. The activation of RAGE then

increases the production of reactive oxygen species (ROS).

The protagonist role in oxidative stress and dysfunction of

cells is played by the nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase (D’Agati and Schmidt, 2010).

ROS plays an important role in the activation of NFκB

signalling via phosphatidylinositol-3 kinase (Pl3K)-protein

kinase B (Akt) while the Pl3K-caspase-3 (Csp-3) by

activating the protein kinase RNA-activated (PKR) that

either induces the NFκB via the p38 MAPK pathway or

activate the eukaryotic initiation factor-α (eIFα) which

inhibits the synthesis of protein and decrease the rate of

translation (Russel et al., 2009). In addition, ROS may also

employ Ras (p38 MAPK-Erk1/2 pathway) and Rac1-Mkk6

mediated pathway to activate the NFκB activation, Rac1-

Mkk4/7, and JAK-STAT mediated pathway to activate the

AP1 and STAT3 respectively (Roy, 2013). The production

of ROS can also be directly involved in the Ca2+ depended

pathway to accelerate the damage of muscle protein.

AGE-MEDIATED  PATHWAYS  THAT  LEAD  TO  THE

COMPLICATIONS  OF  DIABETES  MELLITUS

AGE-RAGE signalling activates the JAK-STAT pathway

Under inflammatory conditions due to the accumulation of

AGEs, osteoclastogenesis can occur via other pathways such

as MCP-mediated, TNF-α mediated, and IL-6 mediated. As

mentioned before, the expression of pro-inflammatory

cytokines such as TNF-α, IL-1 and IL-6 are produced. IL-6

is thought to have the highest concentration out of all

cytokines because of their involvement in various clinical

and physiological conditions (Maeda et al., 2010). In

osteoblast, the binding of IL-6 to IL-6R has been known to

cut off the ERK pathway (Roy, 2013). Besides, the

proinflammatory cytokine IL-6 has been associated as the

potential cause of muscle atrophy (Haddad et al., 2005).

According to Elkina et al. (2011), JAK-STAT pathway is

shown to mediate IL-6 in exerting its effects in muscle

atrophy or muscle wasting. The JAK-STAT pathway also has

been associated with various physiological processes and

Figure 2: Various possible
mechanisms and pathways
which could lead to the
activation of NF-κκκκκB, AP-1
and STAT-3, the
transcription factors of pro-
inflammatory cytokines (IL-
1ααααα, IL-6) and tumour
necrosis factor (TNF-ααααα)
responsible in the
complications of diabetes
mellitus. (Source: modified
from Roy, 2013).
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diseases which are employed by many molecules including

cytokines, interferons, and growth factors (O’Shea et al.,

2015).

AGE-RAGE signalling induces overexpression of RANKL

and bone loss

Receptor activator for nuclear kappa-B ligand or RANKL

is known as a ligand related to the TNF-related activation-

induced of cytokines (TRANCE). Besides binding to

RANK, RANKL also binds to osteoprotegerin (OPG), which

is considered as a decoy receptor. Therefore, it is necessary

to determine the ration of RANKL/OPG. If the ration of

RANKL to OPG is > 1, excessive RANKL is available to

bind to RANK and initiate differentiation of CD14

monocytes into bone resorbing osteoclasts

(osteoclastogenesis (Ono et al., 2020). To balance the

formation of bone, it is important that the activities of

osteoblastic bone formation and osteoclastic bone

resorption are coordinated. The AGE-RAGE signalling may

activate NFκB (Peng et al., 2016) which leads to the

proinflammatory cytokines and RANKL formation. Under

normal condition, RANKL is an important downstream

cytokine effector which regulates osteoclastogenesis and

modulates osteoclastic bone resorption (Weitzmann, 2013).

When RANKL is overexpressed, it may cause rapid bone

resorption which causes the imbalance in bone homeostasis,

leading to bone loss (Delion et al., 2016).

Chronic hyperglycaemia might lead to the over-

expression of RANKL due to the accumulation of AGEs. The

expression of RANKL through the binding with its receptor,

RANK, will activate the signalling pathway for the TNF

receptor-associated factor 6 which in turn regulates the

osteoclastic differentiation by mediating activation of the

NFκB and adapter protein 1 (AP-1). The kinases such as the

p38 mitogen-activated protein kinase (MAPK) and JUN N-

terminal kinase (JNK)-1 are subsequently activated, which

induced transcriptional activation of AP-1 family of

proteins (Roy, 2013). AP-1 regulates the proliferation of

cells, differentiation, and cell death in diverse cell types

(Shaulian and Karin, 2001).

The overexpression of RANKL will also cause the

binding of TNFα with its receptor, the TNFα receptor

(TNFRα) which in turn activates the NFκB through the IKK

pathway and the p38 MAPK pathway subsequently

activates the NFκB promoted transcription of inducible

nitric oxide synthase (iNOS) and muscle RING-finger

protein-1 (MuRF-1) gene that is responsible for the loss of

muscle tissues (Hall et al., 2011). ROS-phospholipase Cγ
(PLCγ) mediated pathway may also be activated by the

TRAF or IKK mediated pathway, and the NFAT induction

which activates the NFκB signalling (Roy, 2013).

USAGE OF TINOSPORA EXTRACTS AND THEIR
ALKALOIDS  IN  DIABETES  TREATMENT

Terpenoids: Borapetoside A and Borapetol B

Borapetoside and borapetol are terpenoid compounds which

can be isolated from the Tinospora species, mainly from T.

crispa. No literature was found showing any direct binding

of the two compounds to RAGE, although our own docking

experiments showed that both compounds bind to RAGE

(unpublished data). The effect and therefore inhibition of

AGE seems more indirect at the moment. It has been shown

that borapetoside A & B (Figure 3) reduce glucose in the

circulation and hence there will be less AGEs formation. A

study conducted by Ruan et al. (2013) has explored the

anti-hyperglycaemic effects of the diterpenoids glycoside,

borapetoside A, on the insulin-dependent and insulin

independent signalling pathway. They have found that

peripheral tissues increase their utilization of glucose

through the action of borapetoside A, which eventually

lowers the hepatic glucogenesis and activates the insulin

      Borapetoside A                        Borapetol B

Figure 3: Left to right; the 2D structure of borapetoside A,
and borapetol B. (Source: National Centre for Biotechnology
Information, 2020a; National Centre for Biotechnology Information,
2020b).
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signalling pathway that causes increase in the uptake of

glucose by insulin, thereafter reduces glucose in the plasma.

The anti-diabetic effect of borapetol B compound isolated

from T. crispa has also been demonstrated. A study carried

out by Lokman et al. (2013) has provided the evidence that

the oral administration of borapetol B by non-glycaemic

control Wistar (W) and spontaneously type 2 diabetic Goto-

Kakizaki (GK) rats ameliorate the blood glucose levels in

treated versus placebo groups.

Alkaloids: Berberine and palmatine

Berberine (Figure 4) has been isolated from various extracts

of medicinal plants including Tinospora species. It is

another well-studied protoberberine alkaloid, which is

known for its role in atherosclerosis, glucose metabolism

as well as for its nephroprotective and immunomodulatory

effects (Neag et al., 2018). In a patient with atherosclerosis,

berberine interrupts the process that involves inflammatory

changes for the vascular wall by upregulating silent

information regulator T1 (SIRT1) expression and through

the inhibition of peroxisome proliferator-activated receptor-

γ (PPARγ) expression (Chi et al., 2014).

Berberine was also demonstrated to improve glucose

metabolism through induction of glycolysis which is likely

a consequence of inhibition of glucose oxidation in

mitochondria (Yin et al., 2008a). This finding is further

supported by Xia et al. (2011) who showed that the

inhibition of gluconeogenesis might be due to the

reduction of ATP level through mitochondrial function

inhibition in the liver. Another study by Zhong et al. (2020)

also reported that berberine impaired hyperglycaemia by

regulating gluconeogenesis in diabetic mice through

hepatic glucagon pathway. The impact of berberine on

HbA1c is comparable with that of metformin (1500mg/day),

a drug commonly used to treat hyperglycaemia in studies

involving type 2 diabetes mellitus (Yin et al., 2008b). Our

own osteoblast cell culture experiments showed a strong

reduction of AGEs and reactive oxygen species formation

when the cells were incubated with Berberine (unpublished

data)

Patel and Misra (2012) showed that three protoberberine

alkaloids isolated from T. cordifolia, namely palmatine,

magnoflorine, and jatrorrhizine can significantly reduce the

plasma glucose level in rats. There have been various

studies which demonstrated the potential of palmatine

(Figure 4), one of the phytochemicals that can be extracted

from Tinospora species, in the treatment of hyperglycaemia.

In a rat study model conducted by Okechukwu et al. (2021)

using the diabetes-induced Sprague Dawley rat, the

chaperone proteins Calreticulin (CALR) and Glucose

Regulatory Protein 78 (GRP78) were downregulated by the

administration of palmatine, while peroxidoxin 4 (Prdx4),

protein disulf ide isomerase (PDIA2/3), Glutathione-S-

Transferase (GST), and Serum Albumin (ALB) were

upregulated. This indicated that antioxidant proteins in

palmatine treated rats may have been activated, protecting

cells against endoplasmic stress and reactive oxygen

species, which could induce oxidative stress. Furthermore,

Mridula et al. (2021) has also shown that palmatine may

exhibit antioxidant and antiglycation properties.

CONCLUSION

Tinospora crispa and T. cordifolia are traditionally used in

the treatment of diabetes, as both of them have a glucose

lowering effect due to inhibiting gluconeogenesis. In this

review, we focused on advanced glycation end-products and

their receptor which play an important role in inducing

oxidative stress in cells and tissues which in the end leads

to cell death and other diabetes associated side effects. After

reviewing the known phytochemicals found in Tinospora

                         Berberine                     Palmatine

Figure 4: Left to right; the 2D structure of berberine and
palmatine. (Source: National Centre for Biotechnology
Information, 2020c; National Centre for Biotechnology Information,
2020d).



414

Medicinal Plants, 14 (3) September 2022

Teknowilie Anak Singa et al.

crispa and T. cordifolia, we looked into borapetoside A and

B, Berberine and palmatine and if they can be utilized as

inhibitor of AGEs-induced cellular stress by blocking the

binding of AGEs to its receptor. The development of these

benef icial phytochemicals as AGE inhibitors and as

treatment of diabetes induced complication seems to be

promising. Prevention of excessive AGEs formation and/or

prevention of binding of AGEs to its receptor could be

added as a potential treatment option for patients with

diabetes mellitus. However, more evidence-based animal

studies, pre-clinical and clinical trials could be important

to support the use of these compounds to treat diabetes and

its complications.
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